Topological Constraints in Directed Polymer Melts.

نویسندگان

  • Pablo Serna
  • Guy Bunin
  • Adam Nahum
چکیده

Polymers in a melt may be subject to topological constraints, as in the example of unlinked polymer rings. How to do statistical mechanics in the presence of such constraints remains a fundamental open problem. We study the effect of topological constraints on a melt of directed polymers, using simulations of a simple quasi-2D model. We find that fixing the global topology of the melt to be trivial changes the polymer conformations drastically. Polymers of length L wander in the transverse direction only by a distance of order (lnL)^{ζ} with ζ≃1.5. This is strongly suppressed in comparison with the Brownian L^{1/2} scaling which holds in the absence of the topological constraint. It is also much smaller than the predictions of standard heuristic approaches-in particular the L^{1/4} of a mean-field-like "array of obstacles" model-so our results present a sharp challenge to theory. Dynamics are also strongly affected by the constraints, and a tagged monomer in an infinite system performs logarithmically slow subdiffusion in the transverse direction. To cast light on the suppression of the strands' wandering, we analyze the topological complexity of subregions of the melt: the complexity is also logarithmically small, and is related to the wandering by a power law. We comment on insights the results give for 3D melts, directed and nondirected.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Entanglements in polymer nanocomposites containing spherical nanoparticles.

We investigate the polymer packing around nanoparticles and polymer/nanoparticle topological constraints (entanglements) in nanocomposites containing spherical nanoparticles in comparison to pure polymer melts using molecular dynamics (MD) simulations. The polymer-nanoparticle attraction leads to good dispersion of nanoparticles. We observe an increase in the number of topological constraints (...

متن کامل

Entanglement effects in defect-free model polymer networks

The influence of topological constraints on the local dynamics in crosslinked polymer melts and their contribution to the elastic properties of rubber elastic systems are long standing problems in statistical mechanics. Polymer networks with diamond lattice connectivity are idealized model systems which isolate the effect of topology conservation from other sources of quenched disorder. By stud...

متن کامل

Entangled polymer systems

Topological constraints, referred to as entanglements in the literature, dominate the viscoelastic behavior of high molecular weight polymeric liquids. To give a microscopic foundation of the phenomenological tube models which successfully describe this behavior, we have recently introduced a method for identifying the so-called primitive path mesh that characterizes the microscopic topological...

متن کامل

Molecular observation of contour-length fluctuations limiting topological confinement in polymer melts.

In order to study the mechanisms limiting the topological chain confinement in polymer melts, we have performed neutron-spin-echo investigations of the single-chain dynamic-structure factor from polyethylene melts over a large range of chain lengths. While at high molecular weight the reptation model is corroborated, a systematic loosening of the confinement with decreasing chain length is foun...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Physical review letters

دوره 115 22  شماره 

صفحات  -

تاریخ انتشار 2015